Zinc-Binding Cysteines: Diverse Functions and Structural Motifs
نویسندگان
چکیده
Cysteine residues are known to perform essential functions within proteins, including binding to various metal ions. In particular, cysteine residues can display high affinity toward zinc ions (Zn2+), and these resulting Zn2+-cysteine complexes are critical mediators of protein structure, catalysis and regulation. Recent advances in both experimental and theoretical platforms have accelerated the identification and functional characterization of Zn2+-bound cysteines. Zn2+-cysteine complexes have been observed across diverse protein classes and are known to facilitate a variety of cellular processes. Here, we highlight the structural characteristics and diverse functional roles of Zn2+-cysteine complexes in proteins and describe structural, computational and chemical proteomic technologies that have enabled the global discovery of novel Zn2+-binding cysteines.
منابع مشابه
The fragment transformation method to detect the protein structural motifs.
To identify functional structural motifs from protein structures of unknown function becomes increasingly important in recent years due to the progress of the structural genomics initiatives. Although certain structural patterns such as the Asp-His-Ser catalytic triad are easy to detect because of their conserved residues and stringently constrained geometry, it is usually more challenging to d...
متن کاملTreble clef finger--a functionally diverse zinc-binding structural motif.
Detection of similarity is particularly difficult for small proteins and thus connections between many of them remain unnoticed. Structure and sequence analysis of several metal-binding proteins reveals unexpected similarities in structural domains classified as different protein folds in SCOP and suggests unification of seven folds that belong to two protein classes. The common motif, termed t...
متن کاملThioredoxin 2, an oxidative stress-induced protein, contains a high affinity zinc binding site.
Two thioredoxins have been described in Escherichia coli, TrxA and Trx2. Both thioredoxins are capable of reducing disulfide bonds using a conserved pair of cysteine residues present in a WCGPC motif. A number of unique structural and regulatory features distinguish the Trx2 subfamily from the much larger TrxA family. The Trx2 subfamily has an additional N-terminal domain of +/- 30 residues, wh...
متن کاملZinc finger proteins: new insights into structural and functional diversity.
Zinc finger proteins are among the most abundant proteins in eukaryotic genomes. Their functions are extraordinarily diverse and include DNA recognition, RNA packaging, transcriptional activation, regulation of apoptosis, protein folding and assembly, and lipid binding. Zinc finger structures are as diverse as their functions. Structures have recently been reported for many new zinc finger doma...
متن کاملThe N-Terminal 85 Amino Acids of the Barley Stripe Mosaic Virus b Pathogenesis Protein Contain Three Zinc-Binding Motifs
Barley stripe mosaic virus RNA encodes b, a cysteine-rich protein that affects pathogenesis. Nine of the eleven cysteines are concentrated in two clusters, designated C1 (residues 1 to 23) and C2 (residues 60 to 85), that are arranged in zinc finger-like motifs. A basic motif (BM) rich in lysine and arginine (residues 19 to 47) resides between the C1 and C2 clusters. We have demonstrated that b...
متن کامل